Экология
региональное природопользование

Поля

Экологические системы. Энергия в экосистемах

Понятие экологии очень обширно, поэтому в зависимости от акцента на той или иной ее задаче меняется и сама формулировка. Для «долгосрочного употребления» лучшим определением может быть, например, следующее.

Экология (греч. oikos — дом и logos — учение) наука, охватывающая изучение всесторонней взаимосвязи между организмами и окружающей средой. Под всесторонней взаимосвязью обычно понимают биологический, физический, химический, социальный, экономический и другие факторы. Изначально экология биологическая наука, поэтому мы довольно часто будем останавливаться на биологических аспектах экологии.

Экосистема — основная функциональная единица в экологии, единый природный комплекс, образованный живыми организмами и средой их обитания (атмосфера, почва, водоемы), в которой живые и неживые компоненты связаны между собой обменом веществ и энергии.

Любой живой организм зависит от спектра приземного солнечного излучения, температуры, влажности окружающей среды, химического состава воздуха, пищи и других факторов. С другой стороны, свободный кислород в атмосфере появляется в результате жизнедеятельности растений, плодородный слой почвы это сложный продукт взаимодействия климата, влаги, живых организмов с верхними слоями горных пород. Биогенное происхождение (то есть связанное с жизнедеятельностью растений, животных, микроорганизмов) имеют каменный уголь, торф, мел и др.

В.И. Вернадский подчеркивал, что «биосфера это наружная оболочка Земли, область распространения жизни, включающая в себя все живые организмы, а также всю неживую среду их обитания, при этом между косными природными телами и живыми веществами идет непрерывный материальный и энергетический обмен, выражающийся в движении атомов, вызванном живым веществом. Этот обмен в ходе времени выражается закономерно меняющимся, непрерывно стремящимся к устойчивости равновесием». Далее в основном рассматриваются общие закономерности взаимоотношений природы и человеческого общества.

Сегодня человеческое общество находится на пороге того этапа эволюции нашей планеты, который называют периодом ноосферы. Ноосфера представляет собой связующее звено между космосом и Землей, которое, используя приходящую на Землю энергию, трансформирует мертвое вещество, создает новые формы материального мира, ускоряя все процессы, протекающие на Земле. Появление жизни это естественный этап развития, который ознаменовал качественное изменение эволюции Земли как космического тела.

Переход биосферы в ноосферу предусматривает управление развитием как общества, так и биосферы. Это должно не только исключить всякие отрицательные последствия природопользования, но и исправить те, что уже имели место. Для этого необходимы:

1) текущий учет изменений в окружающей среде и предотвращение ухудшения качества окружающей среды;
2) прогноз изменений в окружающей среде и связанных с ними экологических последствий.

Экологические факторы среды , с которыми связан любой организм, делятся на две категории:

• факторы неживой природы (абиотические);
• факторы живой природы (биотические).

Приспособительская реакция организмов к тем или иным факторам среды определяется степенью постоянства (периодичностью) воздействия этих факторов.
А. С. Мончадский выделяет три основных фактора:

  1. Относящиеся к явлениям Солнечной системы, и в частности связанные с вращением Земли (смена времен года, суточная смена). Здесь имеется строгая периодичность, действовавшая еще до появления жизни на Земле, возникающие живые организмы должны сразу адаптироваться к этим факторам.
  2. Факторы, являющиеся следствием первичных: влажность, температура, давление, динамика растительной пищи, содержание растворенных газов в воде и др.
  3. Факторы, не имеющие правильной цикличности, например стихийные явления. К этим факторам относятся и антропогенные (производимые человеком) воздействия на окружающую среду, например появление примесей в воде, почве, воздухе, связанное с деятельностью промышленных предприятий.

Для того чтобы адаптация живых организмов к новым условиям могла наследственно закрепиться, требуется длительное эволюционное время, за которое сменятся сотни поколений. Живые организмы, как правило, не успевают выработать приспособительные реакции, то есть адаптация к непериодическим факторам у организмов невозможна.

Ядовитые и вредные вещества, например неочищенные сточные воды, отбросы, выхлопные газы, радиоактивные вещества, биоциды и др., попав в экосистему, не исчезают бесследно. Даже низкие их концентрации, действуя долгое время, могут повредить человеку, животным и растениям. Как показали наблюдения, некоторые яды могут передаваться по пищевым цепочкам и сетям. Так, тяжелые металлы (например, свинец) передаются из растений корове, оттуда в молоко, а с молоком человеку. Инсектициды поступают с отравленными насекомыми в насекомоядную рыбу, а затем к человеку или птице, съевшим эту рыбу.

В отдельных звеньях пищевой цепи может происходить нарастающее накопление ядов. Если они не разлагаются и не выводятся из организмов, то нарушается равновесие химического круговорота веществ. В жизнестойкой экологической системе все время должно поддерживаться равновесие, исключающее необратимое уничтожение тех или иных «каналов» обмена информацией (энергетической, химической, генетической и др.).

Жизнедеятельность всех живых организмов, включая человека, представляет собой работу, для осуществления которой требуется энергия. Энергия солнечной радиации первична на Земле и имеет преимущественное значение для жизни в инфракрасной (0,75—4 мкм) и ультрафиолетовой (0,28—0,4 мкм) областях спектра.

Непрерывный поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. Химические вещества последовательно переходят от одних организмов к другим, то есть происходит последовательный упорядоченный поток вещества и энергии.

Продукция фотосинтеза обеспечивает человека пищей, одеждой, энергией. Например, каменный уголь это солнечная энергия, аккумулированная в продуктах фотосинтеза растений прошлых геологических эпох.

Экология, по сути дела, изучает связь между излучением и экологическими системами и способы превращения энергии внутри системы. Отношения между растениями и животными, между хищниками и жертвами, не говоря уже о численности и видовом составе организмов в каждом их местообитании, лимитируются и управляются потоком энергии, превращающейся из ее концентрированных (конкретных) форм в рассеянные (невосстанавливаемые).

Существует два основных механизма удержания, перераспределения и накопления энергии на Земле:

  1. Механизм, характеризующий среду обитания: испарение, конденсация, градиенты плотности в атмосфере и в океане, геохимические реакции, эрозия и др. (геохимический круговорот веществ).
  2. Механизм, характеризующий жизнедеятельность биообъектов: фотосинтез, дыхание и др.

Все типы экосистем регулируются теми же основными законами, которые управляют и неживыми системами, например техническими установками, машинами. Различие заключается в том, что живые системы, используя часть имеющейся внутри них энергии, способны самовасстанавливаться, а машины приходится чинить, используя при этом внешнюю энергию.

Когда излучение поглощается какимлибо предметом, последний нагревается, то есть энергия излучения переходит в энергию движения молекул, из которых состоит тело, причем, это касается любых физических полей и сред, взаимодействующих с ними. В частности, солнечное излучение сушей и водой поглощается поразному, в результате возникают теплые и холодные области, что в свою очередь служит причиной образования воздушных потоков, которые, например, могут вращать ветряные двигатели и выполнять другую работу. Таким образом, «потребленная» энергия на самом деле не расходуется, она только переводится из состояния, в котором ее легко превратить в работу, в состояние с малой возможностью использования.

Если температура какоголибо тела выше температуры окружающего воздуха, то тело будет отдавать тепло до тех пор, пока его температура не сравняется с температурой окружающей среды, после чего наступает состояние термодинамического равновесия и дальнейшее рассеяние энергии в тепловой форме прекращается. Такая система находится в состоянии максимальной энтропии. Энтропия отражает возможности превращения энергии и рассматривается как мера неупорядоченности системы.

Понятие энтропии как показателя термодинамической искаженной энергии имеет большое значение не только в физике, химии, биологии, но и в экологии для решения проблем, связанных с изменением состояния окружающей среды. Энтропия показывает, что тот или иной процесс может происходить в системе с определенной вероятностью. При этом, если система стремится к равновесному состоянию, энтропия увеличивается и стремится к максимуму.

Применяя положения термодинамики к процессу жизнедеятельности, можно отметить, что живой организм извлекает энергию из пищи, используя упорядоченность ее химических связей. Часть энергии идет на поддержание жизненных процессов, часть передается организмам последующих пищевых уровней. В начале этого процесса находится фотосинтез, при котором повышается Упорядоченность деградировавших органических и минеральных веществ. При этом энтропия уменьшается за счет поступления энергии от Солнца.

Само существование биосферы можно рассматривать как стационарный процесс, реализуемый на фоне грандиозного необратимого процесса охлаждения Солнца. Если возникновение биологической структуры можно представить двумя стадиями: биосинтезом составляющих элементов (макромолекул, клеток) и сборкой из них организованной системы, то процесс сборки находится в значительной степени под термодинамическим контролем, поскольку на молекулярном уровне система стремится к состоянию с наименьшим химическим потенциалом. Самоорганизация и эволюция биологических систем на всех уровнях, начиная с клетки и кончая биосферой в целом, происходят вследствие оттока энтропии в окружающую среду.

Согласно второму началу термодинамики, энергия любой системы стремится к уменьшению, то есть к термодинамическому равновесию, что равнозначно максимальной энтропии. В такое состояние живой организм перейдет, если лишить его возможности извлекать упорядоченность (энергию) из окружающей среды. Закон энтропии универсален и безграничен и гласит, что утратившая чувство гармонии любая структура немедленно поглощается живой природой.

Методы термодинамики применимы только к макроскопическим системам, состоящим из большого числа частиц. Система, которая не может обмениваться со средой ни энергией, ни веществом, является изолированной (камни, шлаки); если происходит обмен только энергией, то система называется замкнутой (теплообменники); а если и энергией, и веществами открытой (биообъекты).

При применении термодинамики к биологическим системам необходимо учитывать особенности организации живых систем:
1) биологические системы открыты для потоков вещества и энергии;
2) процессы в живых системах в конечном счете имеют необратимый характер;
3) живые системы далеки от равновесия;
4) биологические системы гетерофазны и структурированны.

Для описания свойств биологических систем целесообразно применение термодинамики необратимых процессов, которая рассматривает ход процессов во времени (основатели лауреаты Нобелевской премии по химии Л. Онзегер и И. Пригожий). Фундаментальным понятием термодинамики необратимых процессов является стационарное состояние системы. Процесс жизнедеятельности биообъектов сопровождается непрерывно идущими биологическими процессами, выделяя в определенный период времени доминирующий (или тот же, измененный по времени) процесс.

В биологических системах наиболее важными потоками являются потоки вещества и электрических зарядов. Когда по какимлибо причинам стационарность потоков нарушается, то есть нарушается проницаемость мембраны, возникает диодный эффект, при этом изменяется фр, возникает ощущение боли (новое стационарное состояние). В медицинской практике ряд заболеваний, связанных с нарушением стационарности ионного обмена (радикулит, отложение солей и др.), эффективно лечится электротерапевтическими методами.

В общем случае основным свойством живых систем является наличие разности потенциалов на мембранах клеток. Незначительные изменения потенциала сопровождаются четко выраженными физиологическими изменениями: нервным импульсом, транспортом ионов через мембрану, сокращением мышечной ткани и др. Длительное нарушение целостности мембраны всегда ведет к патологии, а выравнивание потенциала означает смерть клетки.

<Фототермическая защита Земли атмосферой
Главная   |   Поля   |   Жизнедеятельность   |   Природопользование   |   Безопасность   |   Карта сайта
2008-2015 © p0d.ru, E-mail:info@p0d.ru